
Introduction The Problem Proposed Solution Conclusions

Dynamic Analysis: Knowing When to Stop

Paul Irofti
paul@irofti.net

Challenges in Analysing Executables:
Scalability, Self-Modifying Code and Synergy

Dagstuhl Seminar, 2014



Introduction The Problem Proposed Solution Conclusions

Outline

1 Introduction

2 The Problem

3 Proposed Solution

4 Conclusions



Introduction The Problem Proposed Solution Conclusions

About Me

Who Am I?

Reverse Engineer (6 years in the AV industry)

anti-virus engines

emulators: static and dynamic analysis research

OpenBSD Hacker:

power management, ACPI

mips64: Loongson and Octeon

compat linux(8) maintainer

porter

Research Assistant and PhD student:

Faculty of Automatic Control and Computers at the
Polytechnic University of Bucharest

PhD on parallel signal processing algorithms using GPGPU
(OpenCL, CUDA)



Introduction The Problem Proposed Solution Conclusions

About Me

Reverse Engineer

Project Lead: AntiMalware Emulator Implementation

JIT support

IEEE 754 Floating Point Support

API Emulation

talked about it at ”Analysis of Executables: Benefits and
Challenges”

Static Antivirus Engines Development

Themida, SVKP, VMProtect, tELock etc.



Introduction The Problem Proposed Solution Conclusions

Current State

Description

Context:

in production (ex. mail server, end-user)

multiple and very different samples run through one emulator

each sample takes different paths through the emulator

some samples take too long

after a point a sample is deemed unacceptable for emulation

passed that threshold the emulation is forced to stop



Introduction The Problem Proposed Solution Conclusions

Current State

Stopping

Existing thresholds are based on:

elapsed time

number of emulated instructions



Introduction The Problem Proposed Solution Conclusions

Current State

Time-based

Pros:

intuitive

easy to implement

always there, at least as a watchdog

Cons:

varies depending on CPU power

can give false-positives due to low platform performance

hard to find a good average

non-deterministic



Introduction The Problem Proposed Solution Conclusions

Current State

Instruction-based

Pros:

deterministic

reports from the field are easier to debug

Cons:

not all instructions are equal

time needed to process k-emulated instructions varies

without a time-based watchdog it can hog the CPU

hard to find a good average

premature stops can lead to false verdicts



Introduction The Problem Proposed Solution Conclusions

Current State

Goal

A deterministic way of stopping the emulation process in due time

reproduceable results

pin-pointing where the emulation stopped

good on all platforms



Introduction The Problem Proposed Solution Conclusions

The Metrics Method

Analysis

Setup:

spot the important nodes in the dynamic analyzer

add counters in these key positions

run the emulator through lots of varied samples

store the execution time and the final counter values



Introduction The Problem Proposed Solution Conclusions

The Metrics Method

The Results

We should have:

a tuple of n counters per sample

a total of m samples

with m corresponding execution times t

and with m � n



Introduction The Problem Proposed Solution Conclusions

The Metrics Method

Counter Weights (1)

With this data we are able to weigh each counter

For one sample:

t =
(
c1 c2 c3 . . . cn

)
×


w1

w2

w3
...
wn





Introduction The Problem Proposed Solution Conclusions

The Metrics Method

Counter Weights (2)

For all m samples:
t1
t2
t3
...
tm

 =


c1,1 c1,2 c1,3 . . . c1,n
c2,1 c2,2 c2,3 . . . c2,n
c3,1 c3,2 c3,3 . . . c3,n

...
...

...
. . .

...
cm,1 cm,2 cm,3 . . . cm,n

×


w1

w2

w3
...
wn





Introduction The Problem Proposed Solution Conclusions

The Metrics Method

Counter Weights (3)

The resulting overdetermined system

Tm = Cm×n ×W n, with m � n

can be solved through least squares, SVD etc.



Introduction The Problem Proposed Solution Conclusions

The Metrics Method

Properties

fast start-up: small set of counters is good enough

easy adaptation through counter addition/removal

a sort of automated O calculator

a good profiling tool



Introduction The Problem Proposed Solution Conclusions

The Metrics Method

Metrics

For lack of a better word, we name the weight values metrics.

Definition

The speed of a platform is measured as metrics per second



Introduction The Problem Proposed Solution Conclusions

The Metrics Method

Deterministic Threshold

We can now build a deterministic threshold:

compute only once an average platform speed

set a metric threshold based on the average speed

if a process was stopped we know exactly where

we also get an implicit time threshold for free

Example

Average speed of 50 m/s, set the threshold to 150 m, it results in
a 3 s maximum emulation time per sample.



Introduction The Problem Proposed Solution Conclusions

Knowing When to Stop

Mostly Harmless

Conclusions

fair on all platforms, different speeds for different machines

easier to reproduce reports and samples from the field

determinism and time thresholding at once

the limit can be easily bumped at runtime

weight calculation is machine indepenedent (done in the lab)

adding / removing code affects the weight system

running a thorough analysis can be time consuming

fresh calculations should be done per release, not per commit



Introduction The Problem Proposed Solution Conclusions

Knowing When to Stop

Future Directions

Continuing research in the field (moving to academia)

looking for ways of improvement or different approaches

investigating different means of average speed calculation

Writing an article about the metrics method



Introduction The Problem Proposed Solution Conclusions

Knowing When to Stop

So Long, and Thanks for All the Fish

Questions?


	Introduction
	The Problem
	Proposed Solution
	Conclusions

