
Intermediate Representation Translator Compiler Memory Management Unit Virtual File System System Calls Conclusions

Emulator Design, Traps and Pitfalls

Paul Irofti
paul@irofti.net

Analysis of Executables: Benefits and Challenges
Dagstuhl Seminar, 2012



Intermediate Representation Translator Compiler Memory Management Unit Virtual File System System Calls Conclusions

Outline

1 Intermediate Representation

2 Translator

3 Compiler

4 Memory Management Unit

5 Virtual File System

6 System Calls

7 Conclusions



Intermediate Representation Translator Compiler Memory Management Unit Virtual File System System Calls Conclusions

Instruction Set Architecture

ISA

Objectives

Sane

Orthogonal

Small



Intermediate Representation Translator Compiler Memory Management Unit Virtual File System System Calls Conclusions

Instruction Set Architecture

Sane – Things to Avoid

IA-32 and friends

variable instruction size

ambiguity

unaligned access



Intermediate Representation Translator Compiler Memory Management Unit Virtual File System System Calls Conclusions

Instruction Set Architecture

Example

Before

407F1A E834000000 CALL sample.407F53

...

407F4F 20978CEAF873 AND BYTE PTR DS:[EDI+73F8EA8C],DL

407F55 020F ADD CL, BYTE PTR DS:[EDI]

After

407F53 F8 CLC

407F54 7302 JNB SHORT sample.407F67

NOTE: Could’ve been worse, could’ve been a RET.



Intermediate Representation Translator Compiler Memory Management Unit Virtual File System System Calls Conclusions

Instruction Set Architecture

Sane – Things to Avoid (2)

ARM

ISA revamp every 6 months



Intermediate Representation Translator Compiler Memory Management Unit Virtual File System System Calls Conclusions

Instruction Set Architecture

Orthogonal

Definition

All instruction types can use all addressing modes.

Example

VAX

ARM11



Intermediate Representation Translator Compiler Memory Management Unit Virtual File System System Calls Conclusions

Instruction Set Architecture

Small

When designing the ISA:

keep a simple minimal set of instructions

make sure you can reduce other CISC instructions to it



Intermediate Representation Translator Compiler Memory Management Unit Virtual File System System Calls Conclusions

Registers

When Picking Registers

There’s not much to consider except:

default size (32/64/128)

granularity (RAX/EAX/AX/AH/AL or NONE)

how many (why make billions when you can make millions?)



Intermediate Representation Translator Compiler Memory Management Unit Virtual File System System Calls Conclusions

Stack

Choosing a stack

Only a few choices really:

have a machine word-sized stack

have a granularity-challenged stack (see IA-32)

have no stack at all



Intermediate Representation Translator Compiler Memory Management Unit Virtual File System System Calls Conclusions

FPU, MMX, SSE et al.

Chaos – Going after ISA extensions

This is the deal breaker. Options:

design only for a specific platform (e.g. IA-32-based only)

sprinkle hacks throughout the codebase

create a dog-slow pseudo-syscall system specially for them

ignore them and hope for the best



Intermediate Representation Translator Compiler Memory Management Unit Virtual File System System Calls Conclusions

Disassembler

Disassembler

For each ISA implement a disassembler that:

tokenizes the instructions

fetches the implicit or explicit opcode arguments

dispatches for translation



Intermediate Representation Translator Compiler Memory Management Unit Virtual File System System Calls Conclusions

Opcodes

Handlers

For each opcode have a translating function that:

receives its arguments

writes out the equivalent functionality in IR opcode(s)



Intermediate Representation Translator Compiler Memory Management Unit Virtual File System System Calls Conclusions

Once everything is translated in IR one can:

compile

interpret

do a mixture of the two



Intermediate Representation Translator Compiler Memory Management Unit Virtual File System System Calls Conclusions

The Problem

Accessing memory

What happens when any of the following needs to be emulated?

MOV EAX, [1000]

JMP [EDX]

STOS DWORD PTR ES:[EDI]



Intermediate Representation Translator Compiler Memory Management Unit Virtual File System System Calls Conclusions

Solutions

Resolving memory access requests

Keeping track of memory writes and reads. Requires:

Initial memory state – OS dependent

Stack state – partially OS dependent

Doing writes and reads on an internally stored memory map

Other optimizations depending on design choice.



Intermediate Representation Translator Compiler Memory Management Unit Virtual File System System Calls Conclusions

The Problem

Accessing imports

But what if the following code pops-up?

01002E8D PUSH ESI

01002E8E LEA EAX, [EBP-0x8]

01002E91 PUSH EAX

01002E92 CALL DWORD [0x1001074]

7DD85AB0 CALL DWORD 0x7dd85ab5

An API call to kernel32.dll!GetSystemTimeAsFileTime.



Intermediate Representation Translator Compiler Memory Management Unit Virtual File System System Calls Conclusions

The Problem

File System Access

Or what if the sample wants to:

create, read, or write a file?

touch magical things like the registry?

have a gentoo-ish peek at /proc and optimize itself?



Intermediate Representation Translator Compiler Memory Management Unit Virtual File System System Calls Conclusions

Solutions

The Need for a Virtual File System

It is obvious that you need to create a sort of fake fs that:

stores created or modified files throughout the emulation

provides a minimal fs environment resembling the expected OS

takes care of special features such as registry

mimics special files such as the ones found in /proc and /dev



Intermediate Representation Translator Compiler Memory Management Unit Virtual File System System Calls Conclusions

The Problem

Low Level System Specific Functions

The API call problem still exists.
A connection between the sample and the library needs to be made.

Solution

Write a loader for each expected filetype (e.g. PE, ELF).



Intermediate Representation Translator Compiler Memory Management Unit Virtual File System System Calls Conclusions

Implementation

Loaders

A loader should:

setup the virtual address space for the sample

resolve link to external libraries



Intermediate Representation Translator Compiler Memory Management Unit Virtual File System System Calls Conclusions

Implementation

Function Implementations

Options:

emulate the real functions

roll your own and run them outside emulation

a mix of the two



Intermediate Representation Translator Compiler Memory Management Unit Virtual File System System Calls Conclusions

Native

Native Implementations

Advantages:

speed – ran outside emulation

trusted – code you wrote

usually smaller code size



Intermediate Representation Translator Compiler Memory Management Unit Virtual File System System Calls Conclusions

Native

Native Implementations(2)

Disadvantages:

crashing brings everything down

harder to debug



Intermediate Representation Translator Compiler Memory Management Unit Virtual File System System Calls Conclusions

Emulated

Emulating Implementations

Advantages:

better control

crashing doesn’t affect the emulator

you can feed the original binary from VFS

less time spent in development



Intermediate Representation Translator Compiler Memory Management Unit Virtual File System System Calls Conclusions

Emulated

Emulating Implementations(2)

Disadvantages:

very slow due to emulation

slow due to complexity you might not need

binary redistribution rights



Intermediate Representation Translator Compiler Memory Management Unit Virtual File System System Calls Conclusions

Mostly Harmless

Writing an emulator is juggling with trade-offs

speed

generalization

information retrieval

hair loss



Intermediate Representation Translator Compiler Memory Management Unit Virtual File System System Calls Conclusions

So Long, and Thanks for All the Fish

Questions?


	Intermediate Representation
	Translator
	Compiler
	Memory Management Unit
	Virtual File System
	System Calls
	Conclusions

