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Instruction Set Architecture

ISA

Objectives

Sane

Orthogonal

Small
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Instruction Set Architecture

Sane – Things to Avoid

IA-32 and friends

variable instruction size

ambiguity

unaligned access
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Instruction Set Architecture

Example

Before

407F1A E834000000 CALL sample.407F53

...

407F4F 20978CEAF873 AND BYTE PTR DS:[EDI+73F8EA8C],DL

407F55 020F ADD CL, BYTE PTR DS:[EDI]

After

407F53 F8 CLC

407F54 7302 JNB SHORT sample.407F67

NOTE: Could’ve been worse, could’ve been a RET.
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Instruction Set Architecture

Sane – Things to Avoid (2)

ARM

ISA revamp every 6 months
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Instruction Set Architecture

Orthogonal

Definition

All instruction types can use all addressing modes.

Example

VAX

ARM11
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Instruction Set Architecture

Small

When designing the ISA:

keep a simple minimal set of instructions

make sure you can reduce other CISC instructions to it
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Registers

When Picking Registers

There’s not much to consider except:

default size (32/64/128)

granularity (RAX/EAX/AX/AH/AL or NONE)

how many (why make billions when you can make millions?)
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Stack

Choosing a stack

Only a few choices really:

have a machine word-sized stack

have a granularity-challenged stack (see IA-32)

have no stack at all
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FPU, MMX, SSE et al.

Chaos – Going after ISA extensions

This is the deal breaker. Options:

design only for a specific platform (e.g. IA-32-based only)

sprinkle hacks throughout the codebase

create a dog-slow pseudo-syscall system specially for them

ignore them and hope for the best
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Disassembler

Disassembler

For each ISA implement a disassembler that:

tokenizes the instructions

fetches the implicit or explicit opcode arguments

dispatches for translation
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Opcodes

Handlers

For each opcode have a translating function that:

receives its arguments

writes out the equivalent functionality in IR opcode(s)
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Once everything is translated in IR one can:

compile

interpret

do a mixture of the two
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The Problem

Accessing memory

What happens when any of the following needs to be emulated?

MOV EAX, [1000]

JMP [EDX]

STOS DWORD PTR ES:[EDI]
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Solutions

Resolving memory access requests

Keeping track of memory writes and reads. Requires:

Initial memory state – OS dependent

Stack state – partially OS dependent

Doing writes and reads on an internally stored memory map

Other optimizations depending on design choice.
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The Problem

Accessing imports

But what if the following code pops-up?

01002E8D PUSH ESI

01002E8E LEA EAX, [EBP-0x8]

01002E91 PUSH EAX

01002E92 CALL DWORD [0x1001074]

7DD85AB0 CALL DWORD 0x7dd85ab5

An API call to kernel32.dll!GetSystemTimeAsFileTime.
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The Problem

File System Access

Or what if the sample wants to:

create, read, or write a file?

touch magical things like the registry?

have a gentoo-ish peek at /proc and optimize itself?
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Solutions

The Need for a Virtual File System

It is obvious that you need to create a sort of fake fs that:

stores created or modified files throughout the emulation

provides a minimal fs environment resembling the expected OS

takes care of special features such as registry

mimics special files such as the ones found in /proc and /dev
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The Problem

Low Level System Specific Functions

The API call problem still exists.
A connection between the sample and the library needs to be made.

Solution

Write a loader for each expected filetype (e.g. PE, ELF).
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Implementation

Loaders

A loader should:

setup the virtual address space for the sample

resolve link to external libraries
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Implementation

Function Implementations

Options:

emulate the real functions

roll your own and run them outside emulation

a mix of the two
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Native

Native Implementations

Advantages:

speed – ran outside emulation

trusted – code you wrote

usually smaller code size
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Native

Native Implementations(2)

Disadvantages:

crashing brings everything down

harder to debug
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Emulated

Emulating Implementations

Advantages:

better control

crashing doesn’t affect the emulator

you can feed the original binary from VFS

less time spent in development
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Emulated

Emulating Implementations(2)

Disadvantages:

very slow due to emulation

slow due to complexity you might not need

binary redistribution rights
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Mostly Harmless

Writing an emulator is juggling with trade-offs

speed

generalization

information retrieval

hair loss
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So Long, and Thanks for All the Fish

Questions?
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