Compare commits
No commits in common. "06c8b79290534a228b93edce613b88acdba0f71c" and "31b377d889ef16df55e3bb3a84896ebac57dbc54" have entirely different histories.
06c8b79290
...
31b377d889
26 changed files with 26 additions and 1095 deletions
|
@ -1,6 +0,0 @@
|
|||
## Ignore travis config file
|
||||
^\.travis\.yml$
|
||||
\.vscode
|
||||
^.*\.Rproj$
|
||||
^\.Rproj\.user$
|
||||
^.*\.txt$
|
7
.gitignore
vendored
7
.gitignore
vendored
|
@ -1,7 +0,0 @@
|
|||
*.js~
|
||||
*.marks
|
||||
*.history
|
||||
*.o
|
||||
*.so
|
||||
*.DS_Store
|
||||
instructiuni.txt
|
21
DESCRIPTION
21
DESCRIPTION
|
@ -1,21 +0,0 @@
|
|||
Package: IEEE
|
||||
Version: 1.0.0
|
||||
Title: For the IEEE article
|
||||
Authors@R: c(
|
||||
person(given = "Adrian", family = "Dusa",
|
||||
role = c("aut", "cre", "cph"),
|
||||
email = "dusa.adrian@unibuc.ro",
|
||||
comment = c(ORCID = "0000-0002-3525-9253"))
|
||||
)
|
||||
URL: https://github.com/dusadrian/IEEE
|
||||
BugReports: https://github.com/dusadrian/IEEE/issues
|
||||
Depends: R (>= 3.6.0)
|
||||
Imports: LogicOpt, Matrix, gurobi
|
||||
Description: An extensive set of functions to perform Qualitative Comparative Analysis:
|
||||
crisp sets ('csQCA'), temporal ('tQCA'), multi-value ('mvQCA')
|
||||
and fuzzy sets ('fsQCA'), using a GUI - graphical user interface.
|
||||
'QCA' is a methodology that bridges the qualitative and quantitative
|
||||
divide in social science research. It uses a Boolean minimization
|
||||
algorithm, resulting in a minimal causal configuration associated
|
||||
with a given phenomenon.
|
||||
License: GPL (>= 3)
|
|
@ -1,9 +0,0 @@
|
|||
importFrom("gurobi", "gurobi")
|
||||
importFrom("Matrix", "Matrix")
|
||||
importFrom("utils", "tail")
|
||||
importFrom("LogicOpt", "logicopt")
|
||||
export(gendat)
|
||||
export(make_infile)
|
||||
export(solvechart)
|
||||
useDynLib(IEEE, .registration = TRUE)
|
||||
|
23
R/gendat.R
23
R/gendat.R
|
@ -1,23 +0,0 @@
|
|||
|
||||
gendat <- function(i, ncols, nrows) {
|
||||
set.seed(i * nrows * ncols)
|
||||
|
||||
# all configurations BUT the outcome have to be unique
|
||||
dat <- unique(
|
||||
matrix(sample(0:1, (ncols - 1)*nrows, replace = TRUE), ncol = ncols - 1)
|
||||
)
|
||||
|
||||
# now that configurations are unique, we can add the outcome
|
||||
dat <- cbind(dat, sample(0:1, nrow(dat), replace = TRUE))
|
||||
|
||||
if (ncols > length(LETTERS) + 1) {
|
||||
colnames(dat) <- c(
|
||||
paste("I", seq(ncols - 1), sep = ""),
|
||||
"OUT"
|
||||
)
|
||||
} else {
|
||||
colnames(dat) <- c(LETTERS[seq(ncols - 1)], "OUT")
|
||||
}
|
||||
|
||||
return(dat[order(dat[, ncols], decreasing = TRUE), ])
|
||||
}
|
|
@ -1,74 +0,0 @@
|
|||
|
||||
make_infile <- function(dat, espname = "infile.esp", copy = FALSE, ...) {
|
||||
|
||||
on.exit(suppressWarnings(sink()))
|
||||
|
||||
dots <- list(...)
|
||||
# number of outcomes
|
||||
no <- ifelse(is.null(dots$no), 1, dots$no)
|
||||
|
||||
dat <- as.data.frame(dat)
|
||||
inputs <- seq(ncol(dat) - no)
|
||||
outputs <- setdiff(seq(ncol(dat)), inputs)
|
||||
iname <- names(dat)[inputs]
|
||||
oname <- names(dat)[outputs]
|
||||
outcome <- dat[, outputs, drop = FALSE]
|
||||
outcome[outcome == 0] <- "-"
|
||||
|
||||
# espname <- paste("infile", i, ncols, nrows, "esp", sep = ".")
|
||||
|
||||
sink(espname)
|
||||
# on.exit(sink())
|
||||
cat(paste(".i", length(inputs), "\n"))
|
||||
cat(paste(".o", no, "\n"))
|
||||
cat(paste(".ilb", paste(iname, collapse = " "), "\n"))
|
||||
cat(paste(".ob", paste(oname, collapse = " "), "\n"))
|
||||
cat(
|
||||
paste(
|
||||
paste(
|
||||
apply(dat[, inputs], 1, paste, collapse = ""),
|
||||
apply(outcome, 1, paste, collapse = ""),
|
||||
sep = " "
|
||||
),
|
||||
collapse = "\n"
|
||||
)
|
||||
)
|
||||
cat("\n.e\n")
|
||||
sink()
|
||||
|
||||
|
||||
lo <- LogicOpt::logicopt(esp_file = espname, mode = "echo")[[1]]
|
||||
outcome <- lo[, outputs, drop = FALSE]
|
||||
outcome[] <- lapply(
|
||||
outcome,
|
||||
function(x) {
|
||||
admisc::recode(x, "1=1; 0=-; else=0")
|
||||
}
|
||||
)
|
||||
|
||||
sink(espname)
|
||||
cat(paste(".i", length(inputs), "\n"))
|
||||
cat(paste(".o", no, "\n"))
|
||||
cat(paste(".ilb", paste(iname, collapse = " "), "\n"))
|
||||
cat(paste(".ob", paste(oname, collapse = " "), "\n"))
|
||||
cat(
|
||||
paste(
|
||||
paste(
|
||||
apply(lo[, inputs], 1, paste, collapse = ""),
|
||||
apply(outcome, 1, paste, collapse = ""),
|
||||
sep = " "
|
||||
),
|
||||
collapse = "\n"
|
||||
)
|
||||
)
|
||||
cat("\n.e\n")
|
||||
sink()
|
||||
|
||||
if (copy) {
|
||||
i <- dots$i
|
||||
if (is.null(i)) {
|
||||
i <- get("i", envir = parent.frame())
|
||||
}
|
||||
file.copy(espname, paste("infile", i, ncol(dat), nrow(dat), "esp", sep = "."))
|
||||
}
|
||||
}
|
133
R/solvechart.R
133
R/solvechart.R
|
@ -1,133 +0,0 @@
|
|||
`solvechart` <- function(x, ...) {
|
||||
|
||||
dots <- list(...)
|
||||
|
||||
if (all(rowSums(x) > 0)) {
|
||||
|
||||
PIlayers <- attr(x, "PIlayers")
|
||||
|
||||
# number of:
|
||||
PIs <- ncol(x)
|
||||
poc <- nrow(x) # positive observed configurations (minterms)
|
||||
|
||||
# sink("timings.txt", append = TRUE)
|
||||
# cat(sprintf("Minterms: %s, PIs: %s", poc, PIs))
|
||||
# sink()
|
||||
|
||||
model <- list(
|
||||
A = x,
|
||||
modelsense = "min",
|
||||
rhs = rep(1, poc),
|
||||
sense = rep(">=", poc),
|
||||
vtype = rep("B", PIs)
|
||||
)
|
||||
|
||||
if (!is.null(PIlayers)) {
|
||||
PIlayers <- PIlayers[PIlayers > 0]
|
||||
}
|
||||
|
||||
if (length(PIlayers) < 2 || isFALSE(dots$multiobj)) {
|
||||
model$obj <- rep(1, PIs)
|
||||
} else {
|
||||
# cat(paste(PIlayers, collapse = " "))
|
||||
|
||||
for (i in seq(length(PIlayers), 2)) {
|
||||
PIlayers[i] <- PIlayers[i] - PIlayers[i - 1]
|
||||
}
|
||||
|
||||
# cat(" -- ", paste(PIlayers, collapse = " "), "\n")
|
||||
|
||||
value <- rep(
|
||||
rev(2^seq(0, length(PIlayers) - 1)),
|
||||
PIlayers
|
||||
)
|
||||
|
||||
if (length(value) < PIs) {
|
||||
value <- c(value, rep(tail(value, n = 1), PIs - length(value)))
|
||||
} else if (PIs < length(value)) {
|
||||
value <- value[seq(PIs)]
|
||||
}
|
||||
|
||||
# cat("Saving the PI chart to a file\n")
|
||||
# admisc::export(
|
||||
# as.data.frame(t(x)),
|
||||
# file = paste("pic", sample(5000, 1), ".csv", sep = ""),
|
||||
# col.names = FALSE
|
||||
# )
|
||||
|
||||
# admisc::export(
|
||||
# as.data.frame(t(attr(x, "implicants"))),
|
||||
# file = paste("imp", sample(5000, 1), ".csv", sep = ""),
|
||||
# col.names = FALSE
|
||||
# )
|
||||
|
||||
model$multiobj <- list(
|
||||
list(
|
||||
objn = rep(1, PIs),
|
||||
priority = 1,
|
||||
weight = 1
|
||||
),
|
||||
list(
|
||||
objn = -1 * value,
|
||||
priority = 0,
|
||||
weight = 1
|
||||
)
|
||||
)
|
||||
}
|
||||
|
||||
tc <- admisc::tryCatchWEM(
|
||||
solution <- gurobi::gurobi(
|
||||
model,
|
||||
params = list(
|
||||
OutputFlag = 0,
|
||||
LogToConsole = 0
|
||||
)
|
||||
)
|
||||
)
|
||||
|
||||
if (is.null(tc$error)) {
|
||||
# sink("timings.txt", append = TRUE)
|
||||
# cat(sprintf(", Time: %s\n", round(solution$runtime, 3)))
|
||||
# sink()
|
||||
|
||||
if (round(solution$objval[1]) < solution$objval[1]) {
|
||||
# the weighted method did not yield precise results
|
||||
temp <- sapply(solution$pool, function(x) {
|
||||
return(round(x$objval[1]) == x$objval[1])
|
||||
})
|
||||
|
||||
if (any(temp)) {
|
||||
solution <- solution$pool[[which(temp)[1]]]$xn
|
||||
} else {
|
||||
# There is still no ideintified solution with an integer number of PIs
|
||||
# Give up weigthing
|
||||
model$multiobj <- NULL
|
||||
|
||||
# and return the uneighted solution
|
||||
model$obj <- rep(1, PIs)
|
||||
solution <- gurobi::gurobi(
|
||||
model,
|
||||
params = list(
|
||||
OutputFlag = 0,
|
||||
LogToConsole = 0
|
||||
)
|
||||
)$x
|
||||
}
|
||||
} else {
|
||||
solution <- solution$x
|
||||
}
|
||||
} else {
|
||||
solution <- lpSolve::lp(
|
||||
"min",
|
||||
rep(1, ncol(x)),
|
||||
x,
|
||||
">=",
|
||||
1,
|
||||
int.vec = seq(nrow(x)),
|
||||
all.bin = TRUE
|
||||
)$solution
|
||||
}
|
||||
|
||||
return(as.integer(which(solution > 0)))
|
||||
}
|
||||
}
|
16
README.md
16
README.md
|
@ -1,16 +0,0 @@
|
|||
BUILD
|
||||
-----
|
||||
cd ${HOME}
|
||||
R CMD build IEEE
|
||||
export LD_LIBRARY_PATH=/usr/lib/x86_64-linux-gnu:/opt/gurobi1200/linux64/lib
|
||||
R CMD INSTALL IEEE_1.0.0.tar.gz
|
||||
|
||||
TEST
|
||||
----
|
||||
R
|
||||
--
|
||||
> library(IEEE)
|
||||
> compare(1,20,30,file="R-log.txt")
|
||||
|
||||
$ cat R-log.txt
|
||||
1, 20, 30, 0.006, 0.357, "(!N&!P&!R) + (J&O&!S) + (B&!H&!Q) + (J&Q)", "(J&Q) + (!A&B&!O) + (F&O&!Q)", 3332, 233
|
|
@ -109,9 +109,9 @@ nchoosek(int n, int k)
|
|||
#endif
|
||||
__kernel void
|
||||
ccubes_task(int k,
|
||||
__global const int *nofvalues, /* IN: RC */
|
||||
__global const int *ON_set, /* IN: RC */
|
||||
__global const int *OFF_set, /* IN: RC */
|
||||
__global const real *nofvalues, /* IN: RC */
|
||||
__global const real *ON_set, /* IN: RC */
|
||||
__global const real *OFF_set, /* IN: RC */
|
||||
__global const unsigned int *p_implicants_pos, /* IN: RC */
|
||||
__global const unsigned int *p_implicants_val, /* IN: RC */
|
||||
__global const int *last_index, /* IN: RC */
|
|
@ -284,7 +284,6 @@ cl_build(struct cl_uctx uctx, cl_device_type dev,
|
|||
FILE *kern_file = NULL;
|
||||
char *kern_src = NULL;
|
||||
size_t srcsz = 0;
|
||||
size_t ret;
|
||||
|
||||
int type;
|
||||
|
||||
|
@ -327,11 +326,7 @@ cl_build(struct cl_uctx uctx, cl_device_type dev,
|
|||
result = CL_INVALID_VALUE;
|
||||
goto err;
|
||||
}
|
||||
ret = fread(kern_src, 1, srcsz, kern_file);
|
||||
if (ret != srcsz) {
|
||||
log_warn("cl", "fread() failed!");
|
||||
goto err;
|
||||
}
|
||||
fread(kern_src, 1, srcsz, kern_file);
|
||||
kern_src[srcsz] = 0;
|
||||
|
||||
log_info("cl", "FILE DUMP BEGINS");
|
|
@ -133,9 +133,9 @@ err:
|
|||
|
||||
int
|
||||
ccubes_alloc(struct ccubes_context *ctx,
|
||||
int *nofvalues, /* IN: RC */
|
||||
int *ON_set, /* IN: RC */
|
||||
int *OFF_set, /* IN: RC */
|
||||
real *nofvalues, /* IN: RC */
|
||||
real *ON_set, /* IN: RC */
|
||||
real *OFF_set, /* IN: RC */
|
||||
unsigned int *p_implicants_pos, /* IN: RC */
|
||||
unsigned int *p_implicants_val, /* IN: RC */
|
||||
int *last_index, /* IN: RC */
|
||||
|
@ -161,24 +161,24 @@ ccubes_alloc(struct ccubes_context *ctx,
|
|||
* INPUTS
|
||||
*/
|
||||
|
||||
/* __global const int *nofvalues, IN: RC */
|
||||
/* __global const real *nofvalues, IN: RC */
|
||||
ctx->nofvalues = clCreateBuffer(ctx->clctx->ctx,
|
||||
CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR,
|
||||
ctx->ninputs * sizeof(int), nofvalues, &rc);
|
||||
ctx->ninputs * sizeof(real), nofvalues, &rc);
|
||||
if (rc != CL_SUCCESS) {
|
||||
goto err;
|
||||
}
|
||||
/* __global const int *ON_set, IN: RC */
|
||||
/* __global const real *ON_set, IN: RC */
|
||||
ctx->ON_set = clCreateBuffer(ctx->clctx->ctx,
|
||||
CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR,
|
||||
ctx->posrows * ctx->ninputs * sizeof(int), ON_set, &rc);
|
||||
ctx->posrows * ctx->ninputs * sizeof(real), ON_set, &rc);
|
||||
if (rc != CL_SUCCESS) {
|
||||
goto err;
|
||||
}
|
||||
/* __global const int *OFF_set, IN: RC */
|
||||
/* __global const real *OFF_set, IN: RC */
|
||||
ctx->OFF_set = clCreateBuffer(ctx->clctx->ctx,
|
||||
CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR,
|
||||
ctx->ninputs * ctx->negrows * sizeof(int), OFF_set, &rc);
|
||||
ctx->ninputs * ctx->negrows * sizeof(real), OFF_set, &rc);
|
||||
if (rc != CL_SUCCESS) {
|
||||
goto err;
|
||||
}
|
||||
|
@ -381,7 +381,7 @@ err:
|
|||
}
|
||||
|
||||
int
|
||||
ccubes_do_tasks(int n_tasks,
|
||||
ccubes(int n_tasks,
|
||||
int n_tasks_off,
|
||||
int k,
|
||||
int ninputs,
|
||||
|
@ -391,9 +391,9 @@ ccubes_do_tasks(int n_tasks,
|
|||
int value_bit_width,
|
||||
int pichart_words,
|
||||
int estimPI,
|
||||
int *nofvalues, /* IN: RC */
|
||||
int *ON_set, /* IN: RC */
|
||||
int *OFF_set, /* IN: RC */
|
||||
real *nofvalues, /* IN: RC */
|
||||
real *ON_set, /* IN: RC */
|
||||
real *OFF_set, /* IN: RC */
|
||||
unsigned int *p_implicants_pos, /* IN: RC */
|
||||
unsigned int *p_implicants_val, /* IN: RC */
|
||||
int *last_index, /* IN: RC */
|
|
@ -70,11 +70,10 @@ struct ccubes_context {
|
|||
|
||||
/* ND-Range */
|
||||
size_t gws; /* global work size */
|
||||
size_t goff; /* global offset */
|
||||
};
|
||||
|
||||
int
|
||||
ccubes_do_tasks(int n_tasks,
|
||||
ccubes(int n_tasks,
|
||||
int n_tasks_off,
|
||||
int k,
|
||||
int ninputs,
|
||||
|
@ -84,9 +83,9 @@ ccubes_do_tasks(int n_tasks,
|
|||
int value_bit_width,
|
||||
int pichart_words,
|
||||
int estimPI,
|
||||
int *nofvalues, /* IN: RC */
|
||||
int *ON_set, /* IN: RC */
|
||||
int *OFF_set, /* IN: RC */
|
||||
real *nofvalues, /* IN: RC */
|
||||
real *ON_set, /* IN: RC */
|
||||
real *OFF_set, /* IN: RC */
|
||||
unsigned int *p_implicants_pos, /* IN: RC */
|
||||
unsigned int *p_implicants_val, /* IN: RC */
|
||||
int *last_index, /* IN: RC */
|
||||
|
@ -98,4 +97,9 @@ ccubes_do_tasks(int n_tasks,
|
|||
unsigned int *pichart_values /* OUT: RW */
|
||||
);
|
||||
|
||||
int
|
||||
clccubes(struct ccubes_context *ccubesctx, cl_mem alpha0, cl_mem G, size_t signals,
|
||||
size_t atoms, uint32_t sparsity, uint32_t pcoding, cl_mem gamma, cl_uint
|
||||
num_events_in_wait_list, const cl_event *event_wait_list, cl_event *ev_ccubes);
|
||||
|
||||
#endif
|
643
src/CCubes.c
643
src/CCubes.c
|
@ -1,643 +0,0 @@
|
|||
#include <R_ext/RS.h>
|
||||
#include <R_ext/Boolean.h>
|
||||
#include <R.h>
|
||||
#include <Rinternals.h>
|
||||
#include <Rmath.h>
|
||||
#include <R_ext/Rdynload.h>
|
||||
#include <sys/time.h>
|
||||
|
||||
|
||||
#include <stdbool.h>
|
||||
#include <math.h>
|
||||
#include "CCubes.h"
|
||||
|
||||
#ifdef _OPENMP
|
||||
#undef match
|
||||
#include <omp.h>
|
||||
#endif
|
||||
|
||||
#include "real.h"
|
||||
#include "cl_setup.h"
|
||||
|
||||
#include "clccubes.h"
|
||||
|
||||
#include "config.h"
|
||||
#include "logging.h"
|
||||
|
||||
|
||||
SEXP CCubes(SEXP tt) {
|
||||
|
||||
// $ export BITS_PER_WORD=32 in the Terminal, before running R
|
||||
|
||||
// 32 bits per word, in bit shifting representation
|
||||
char *bits_per_word = getenv("BITS_PER_WORD"); // Read from the PATH
|
||||
int BITS_PER_WORD = bits_per_word ? atoi(bits_per_word) : 32;
|
||||
if (BITS_PER_WORD != 8 && BITS_PER_WORD != 16 && BITS_PER_WORD != 32 && BITS_PER_WORD != 64) {
|
||||
BITS_PER_WORD = 32; // Default to 32
|
||||
}
|
||||
|
||||
// $ export PRINT_INFO=1 in the Terminal, before running R
|
||||
char *print_info = getenv("PRINT_INFO"); // Read from the PATH
|
||||
Rboolean PRINT_INFO = print_info && print_info[0] == '1';
|
||||
|
||||
int multiplier = 0;
|
||||
struct timeval start, end;
|
||||
double elapsed_time;
|
||||
|
||||
config_set_int("log", LOG_LEVEL_WARN);
|
||||
config_set_int("log:ccubes", LOG_LEVEL_WARN);
|
||||
config_set_int("cl", LOG_LEVEL_DEBUG);
|
||||
|
||||
if (PRINT_INFO) {
|
||||
Rprintf("--- START ---\n");
|
||||
gettimeofday(&start, NULL); // Start time
|
||||
}
|
||||
|
||||
int *p_tt = INTEGER(tt);
|
||||
int ttrows = nrows(tt); // number of rows in the data matrix
|
||||
int ninputs = ncols(tt) - 1; // number of inputs (columns - 1, the last one is the outcome)
|
||||
|
||||
// calculate the number of positive output rows (the ON set)
|
||||
int posrows = 0;
|
||||
for (int r = 0; r < ttrows; r++) {
|
||||
posrows += p_tt[ninputs * ttrows + r];
|
||||
}
|
||||
|
||||
// calculate the number of negative output rows (the OFF set)
|
||||
int negrows = ttrows - posrows;
|
||||
|
||||
if (negrows == 0) {
|
||||
// if there are no negative output rows, no PIs can be found
|
||||
// all inputs will be completely minimized
|
||||
return(R_NilValue);
|
||||
}
|
||||
|
||||
// split the minterms in the ON and OFF set matrices
|
||||
int ON_set[posrows * ninputs];
|
||||
int OFF_set[ninputs * negrows];
|
||||
int rowpos = 0, rowneg = 0;
|
||||
int max_value = 0;
|
||||
|
||||
for (int r = 0; r < ttrows; r++) {
|
||||
if (p_tt[ninputs * ttrows + r] == 1) { // positive
|
||||
for (int c = 0; c < ninputs; c++) {
|
||||
int value = p_tt[c * ttrows + r];
|
||||
ON_set[c * posrows + rowpos] = value;
|
||||
if (value > max_value) {
|
||||
max_value = value;
|
||||
}
|
||||
}
|
||||
rowpos += 1;
|
||||
}
|
||||
else { // negative
|
||||
for (int c = 0; c < ninputs; c++) {
|
||||
int value = p_tt[c * ttrows + r];
|
||||
OFF_set[c * negrows + rowneg] = value;
|
||||
if (value > max_value) {
|
||||
max_value = value;
|
||||
}
|
||||
}
|
||||
rowneg += 1;
|
||||
}
|
||||
}
|
||||
|
||||
int value_bit_width = 0;
|
||||
while (max_value > 0) {
|
||||
max_value >>= 1; // Shift right until no bits remain
|
||||
value_bit_width++;
|
||||
}
|
||||
|
||||
// calculate the number of values (biggest number) for each input
|
||||
int nofvalues[ninputs];
|
||||
int nofpi[ninputs];
|
||||
|
||||
for (int i = 0; i < ninputs; i++) {
|
||||
nofvalues[i] = 0; // initialize
|
||||
nofpi[i] = 0; // initialize
|
||||
|
||||
for (int r = 0; r < ttrows; r++) {
|
||||
if (nofvalues[i] < p_tt[i * ttrows + r]) {
|
||||
nofvalues[i] = p_tt[i * ttrows + r];
|
||||
}
|
||||
}
|
||||
|
||||
// add 1 because if the biggest number is 2 then it has three levels: 0, 1 and 2
|
||||
nofvalues[i] += 1;
|
||||
|
||||
if (nofvalues[i] == 1) {
|
||||
// no input ever has less than two values
|
||||
nofvalues[i] = 2;
|
||||
}
|
||||
}
|
||||
|
||||
// preallocating for an estimated large number of 10000 found PIs
|
||||
// this number will be iteratively increased when the found PIs reach the upper limit
|
||||
int estimPI = 250000;
|
||||
|
||||
// the index of the PIs, in descending order of their number of covered ON-set minterms
|
||||
int *p_covered = R_Calloc(estimPI, int);
|
||||
|
||||
// many PIs will have the same coverage, but they don't necessarily cover the same minterms
|
||||
// to employ row dominance when solving the PI chart, we need to compare the coverage of the
|
||||
// current PI with the coverage of the previous PIs. If this PI survives the comparison, its
|
||||
// coverage has to be added in the p_covered vector, and its order in the p_covered
|
||||
// vector, at the last index of the PI coverage with the same number of minterms
|
||||
int last_index[posrows]; // descending order
|
||||
|
||||
// p_pichart = malloc(estimPI * posrows * sizeof(int));
|
||||
// memset(p_pichart, false, estimPI * posrows * sizeof(int));
|
||||
int *p_pichart = (int *) R_Calloc(estimPI * posrows, int);
|
||||
// prefixing (int *) prefills in all values with 0s
|
||||
|
||||
int pichart_words = (posrows + BITS_PER_WORD - 1) / BITS_PER_WORD; // Words needed per PI chart columns
|
||||
unsigned int *p_pichart_pos = (unsigned int *) R_Calloc(estimPI * pichart_words, unsigned int);
|
||||
int implicant_words = (ninputs + BITS_PER_WORD - 1) / BITS_PER_WORD; // Words needed per PI representation
|
||||
unsigned int *p_implicants_pos = (unsigned int *) R_Calloc(estimPI * implicant_words, unsigned int);
|
||||
unsigned int *p_implicants_val = (unsigned int *) R_Calloc(estimPI * implicant_words, unsigned int);
|
||||
|
||||
int prevfoundPI = 0; // the number of previously found PIs
|
||||
int foundPI = 0;
|
||||
int prevsolmin = 0; // the minimum number of PIs that solve the PI chart
|
||||
int solmin = 0;
|
||||
|
||||
// the positions of the PIs solving the PI chart
|
||||
// a vector which can never be lengthier than the number of ON minterms (posrows)
|
||||
int previndices[posrows];
|
||||
int indices[posrows];
|
||||
|
||||
|
||||
for (int i = 0; i < posrows; i++) {
|
||||
previndices[i] = 0;
|
||||
indices[i] = 0;
|
||||
last_index[i] = 0;
|
||||
}
|
||||
|
||||
Rboolean ON_set_covered = false;
|
||||
if (PRINT_INFO) {
|
||||
Rprintf("ON-set minterms: %d\n", posrows);
|
||||
#ifdef _OPENMP
|
||||
Rprintf("OpenMP enabled, %d workers\n", omp_get_max_threads());
|
||||
#endif
|
||||
}
|
||||
|
||||
|
||||
int stop_counter = 0; // to stop if two consecutive levels of complexity yield no PIs
|
||||
int k;
|
||||
for (k = 1; k <= ninputs; k++) {
|
||||
if (PRINT_INFO) {
|
||||
Rprintf("---k: %d\n", k);
|
||||
}
|
||||
|
||||
int n_tasks = 512;
|
||||
for (int task = 0; task < nchoosek(ninputs, k); task+=n_tasks) {
|
||||
bool *coverage;
|
||||
unsigned int *fixed_bits;
|
||||
unsigned int *value_bits;
|
||||
unsigned int *pichart_values;
|
||||
ccubes_do_tasks(n_tasks,
|
||||
task,
|
||||
k,
|
||||
ninputs,
|
||||
posrows,
|
||||
negrows,
|
||||
implicant_words,
|
||||
value_bit_width,
|
||||
pichart_words,
|
||||
estimPI,
|
||||
nofvalues,
|
||||
ON_set,
|
||||
OFF_set,
|
||||
p_implicants_pos,
|
||||
p_implicants_val,
|
||||
last_index,
|
||||
p_covered,
|
||||
p_pichart_pos,
|
||||
coverage,
|
||||
fixed_bits,
|
||||
value_bits,
|
||||
pichart_values
|
||||
);
|
||||
}
|
||||
|
||||
#ifdef _OPENMP
|
||||
#pragma omp parallel for schedule(dynamic)
|
||||
#endif
|
||||
|
||||
for (int task = 0; task < nchoosek(ninputs, k); task++) {
|
||||
int tempk[k];
|
||||
int x = 0;
|
||||
int start_point = task;
|
||||
|
||||
// fill the combination for the current task
|
||||
for (int i = 0; i < k; i++) {
|
||||
while (nchoosek(ninputs - (x + 1), k - (i + 1)) <= start_point) {
|
||||
start_point -= nchoosek(ninputs - (x + 1), k - (i + 1));
|
||||
x++;
|
||||
}
|
||||
tempk[i] = x;
|
||||
x++;
|
||||
}
|
||||
|
||||
// allocate vectors of decimal row numbers for the positive and negative rows
|
||||
int decpos[posrows];
|
||||
int decneg[negrows];
|
||||
|
||||
// create the vector of multiple bases, useful when calculating the decimal representation
|
||||
// of a particular combination of columns, for each row
|
||||
int mbase[k];
|
||||
mbase[0] = 1; // the first number is _always_ equal to 1, irrespective of the number of values in a certain input
|
||||
|
||||
// calculate the vector of multiple bases, for example if we have k = 3 (three inputs) with
|
||||
// 2, 3 and 2 values then mbase will be [1, 2, 6] from: 1, 1 * 2 = 2, 2 * 3 = 6
|
||||
for (int i = 1; i < k; i++) {
|
||||
mbase[i] = mbase[i - 1] * nofvalues[tempk[i - 1]];
|
||||
}
|
||||
|
||||
// calculate decimal numbers, using mbase, fills in decpos and decneg
|
||||
for (int r = 0; r < posrows; r++) {
|
||||
decpos[r] = 0;
|
||||
for (int c = 0; c < k; c++) {
|
||||
decpos[r] += ON_set[tempk[c] * posrows + r] * mbase[c];
|
||||
}
|
||||
}
|
||||
|
||||
for (int r = 0; r < negrows; r++) {
|
||||
decneg[r] = 0;
|
||||
for (int c = 0; c < k; c++) {
|
||||
decneg[r] += OFF_set[tempk[c] * negrows + r] * mbase[c];
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
int possible_rows[posrows];
|
||||
|
||||
Rboolean possible_cover[posrows];
|
||||
possible_cover[0] = true; // Rboolean flag, to be set with false if found among the OFF set
|
||||
|
||||
int found = 0;
|
||||
|
||||
// identifies all unique decimal rows, for the selected combination of k inputs
|
||||
for (int r = 0; r < posrows; r++) {
|
||||
int prev = 0;
|
||||
Rboolean unique = true; // Rboolean flag, assume the row is unique
|
||||
while (prev < found && unique) {
|
||||
unique = decpos[possible_rows[prev]] != decpos[r];
|
||||
prev++;
|
||||
}
|
||||
|
||||
if (unique) {
|
||||
possible_rows[found] = r;
|
||||
possible_cover[found] = true;
|
||||
found++;
|
||||
}
|
||||
}
|
||||
|
||||
if (found > 0) {
|
||||
// some of the ON set numbers are possible PIs (not found in the OFF set)
|
||||
int frows[found];
|
||||
|
||||
// verify if this is a possible PI
|
||||
// (if the same decimal number is not found in the OFF set)
|
||||
for (int i = found - 1; i >= 0; i--) {
|
||||
int j = 0;
|
||||
while (j < negrows && possible_cover[i]) {
|
||||
if (decpos[possible_rows[i]] == decneg[j]) {
|
||||
possible_cover[i] = false;
|
||||
found--;
|
||||
}
|
||||
j++;
|
||||
}
|
||||
|
||||
if (possible_cover[i]) {
|
||||
frows[found - i - 1] = possible_rows[i];
|
||||
}
|
||||
}
|
||||
// Rprintf("task: %d; rows: %d\n", task, found);
|
||||
|
||||
for (int f = 0; f < found; f++) {
|
||||
|
||||
|
||||
// create a temporary vector of length k, containing the values from the initial ON set
|
||||
// plus 1 (because 0 now signals a minimization, it becomes 1, and 1 becomes 2 etc.
|
||||
int tempc[k];
|
||||
|
||||
// using bit shifting, store the fixed bits and value bits
|
||||
unsigned int fixed_bits[implicant_words];
|
||||
unsigned int value_bits[implicant_words];
|
||||
|
||||
for (int i = 0; i < implicant_words; i++) {
|
||||
fixed_bits[i] = 0U;
|
||||
value_bits[i] = 0U;
|
||||
}
|
||||
|
||||
for (int c = 0; c < k; c++) {
|
||||
int value = ON_set[tempk[c] * posrows + frows[f]];
|
||||
tempc[c] = value + 1;
|
||||
|
||||
int word_index = tempk[c] / BITS_PER_WORD;
|
||||
int bit_index = tempk[c] % BITS_PER_WORD;
|
||||
|
||||
fixed_bits[word_index] |= 1U << bit_index;
|
||||
value_bits[word_index] |= (unsigned int)value << (bit_index * value_bit_width);
|
||||
}
|
||||
|
||||
// check if the current PI is not redundant
|
||||
Rboolean redundant = false;
|
||||
|
||||
int i = 0;
|
||||
while (i < prevfoundPI && !redundant) {
|
||||
// /*
|
||||
// - ck contains the complexity level for each of the previously found non-redundant PIs
|
||||
// - indx is a matrix containing the indexes of the columns where the values were stored
|
||||
// - a redundant PI is one for which all values from a previous PI are exactly the same:
|
||||
// 0 0 1 2 0, let's say previously found PI
|
||||
// which means a corresponding ck = 2 and a corresponding indx = [3, 4]
|
||||
// 0 0 1 2 1 is redundant because on both columns 3 and 4 the values are equal
|
||||
// therefore sumeq = 2 and it will be equal to v = 2 when reaching the complexity level ck = 2
|
||||
// */
|
||||
|
||||
Rboolean is_subset = true; // Assume it's a subset unless proven otherwise
|
||||
|
||||
for (int w = 0; w < implicant_words; w++) {
|
||||
// If the new PI has values on positions outside the existing PI’s fixed positions, it’s not a subset
|
||||
if ((fixed_bits[w] & p_implicants_pos[i * implicant_words + w]) != p_implicants_pos[i * implicant_words + w]) {
|
||||
is_subset = false;
|
||||
break;
|
||||
}
|
||||
|
||||
// then compare the value bits, if one or more values on those positions are different, it’s not a subset
|
||||
if ((value_bits[w] & p_implicants_val[i * implicant_words + w]) != p_implicants_val[i * implicant_words + w]) {
|
||||
is_subset = false;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
redundant = is_subset;
|
||||
|
||||
i++;
|
||||
}
|
||||
|
||||
if (redundant) continue;
|
||||
|
||||
Rboolean coverage[posrows];
|
||||
int covsum = 0;
|
||||
unsigned int pichart_values[pichart_words];
|
||||
for (int w = 0; w < pichart_words; w++) {
|
||||
pichart_values[w] = 0U;
|
||||
}
|
||||
|
||||
for (int r = 0; r < posrows; r++) {
|
||||
coverage[r] = decpos[r] == decpos[frows[f]];
|
||||
if (coverage[r]) {
|
||||
int word_index = r / BITS_PER_WORD;
|
||||
int bit_index = r % BITS_PER_WORD;
|
||||
pichart_values[word_index] |= (1U << bit_index);
|
||||
}
|
||||
covsum += coverage[r];
|
||||
}
|
||||
|
||||
// verify row dominance
|
||||
int rd = 0;
|
||||
while (rd < last_index[covsum - 1] && !redundant) {
|
||||
|
||||
bool dominated = true;
|
||||
for (int w = 0; w < pichart_words; w++) {
|
||||
if ((pichart_values[w] & p_pichart_pos[p_covered[rd] * pichart_words + w]) != pichart_values[w]) {
|
||||
dominated = false;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
redundant = dominated;
|
||||
rd++;
|
||||
}
|
||||
|
||||
if (redundant) continue;
|
||||
|
||||
|
||||
// Rprintf("It is a prime implicant\n");
|
||||
// This operation first gets a new index to push in the global array in a concurrent way
|
||||
// Then adds the result there.
|
||||
// We could synchronize only the index and let the copy operation happen in parallel BUT this
|
||||
// creates a false sharing problem and the performance is down by several factors.
|
||||
|
||||
#ifdef _OPENMP
|
||||
#pragma omp critical
|
||||
#endif
|
||||
{
|
||||
|
||||
// push the PI information to the global arrays
|
||||
|
||||
for (int i = foundPI; i > last_index[covsum - 1]; i--) {
|
||||
p_covered[i] = p_covered[i - 1];
|
||||
}
|
||||
|
||||
p_covered[last_index[covsum - 1]] = foundPI;
|
||||
|
||||
for (int l = 1; l < covsum; l++) {
|
||||
last_index[l - 1] += 1;
|
||||
}
|
||||
|
||||
for (int w = 0; w < implicant_words; w++) {
|
||||
p_implicants_pos[implicant_words * foundPI + w] = fixed_bits[w];
|
||||
p_implicants_val[implicant_words * foundPI + w] = value_bits[w];
|
||||
}
|
||||
|
||||
// populate the PI chart
|
||||
for (int r = 0; r < posrows; r++) {
|
||||
for (int w = 0; w < pichart_words; w++) {
|
||||
p_pichart_pos[foundPI * pichart_words + w] = pichart_values[w];
|
||||
}
|
||||
|
||||
p_pichart[posrows * foundPI + r] = coverage[r];
|
||||
}
|
||||
|
||||
++foundPI;
|
||||
|
||||
// when needed, increase allocated memory
|
||||
if (foundPI / estimPI > 0.9) {
|
||||
int old_size = estimPI;
|
||||
estimPI += 100000;
|
||||
p_pichart = R_Realloc(p_pichart, posrows * estimPI, int);
|
||||
p_pichart_pos = R_Realloc(p_pichart_pos, estimPI, unsigned int);
|
||||
p_implicants_val = R_Realloc(p_implicants_val, ninputs * estimPI, unsigned int);
|
||||
p_implicants_pos = R_Realloc(p_implicants_pos, ninputs * estimPI, unsigned int);
|
||||
p_covered = R_Realloc(p_covered, estimPI, int);
|
||||
|
||||
for (unsigned int i = old_size; i < posrows * estimPI; i++) {
|
||||
p_pichart[i] = 0;
|
||||
}
|
||||
for (unsigned int i = old_size; i < estimPI; i++) {
|
||||
p_pichart_pos[i] = 0U;
|
||||
}
|
||||
for (unsigned int i = old_size; i < ninputs * estimPI; i++) {
|
||||
p_implicants_val[i] = 0U;
|
||||
p_implicants_pos[i] = 0U;
|
||||
}
|
||||
|
||||
if (PRINT_INFO) {
|
||||
multiplier++;
|
||||
Rprintf("%dx ", multiplier);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
nofpi[k - 1] = foundPI;
|
||||
|
||||
if (foundPI > 0 && !ON_set_covered) {
|
||||
Rboolean test_coverage = true;
|
||||
|
||||
int r = 0;
|
||||
while (r < posrows && test_coverage) {
|
||||
|
||||
Rboolean minterm_covered = false;
|
||||
int c = 0;
|
||||
|
||||
while (c < foundPI && !minterm_covered) {
|
||||
minterm_covered = p_pichart[c * posrows + r];
|
||||
c++;
|
||||
}
|
||||
|
||||
test_coverage = minterm_covered;
|
||||
r++;
|
||||
}
|
||||
|
||||
ON_set_covered = test_coverage;
|
||||
}
|
||||
|
||||
if (ON_set_covered) {
|
||||
// Rprintf("posrows: %d; foundPI: %d\n", posrows, foundPI);
|
||||
|
||||
|
||||
if (PRINT_INFO) {
|
||||
gettimeofday(&end, NULL); // End time
|
||||
elapsed_time = (end.tv_sec - start.tv_sec) + (end.tv_usec - start.tv_usec) / 1e6;
|
||||
Rprintf("Time taken finding %d PIs: %f sec.\n", foundPI, elapsed_time);
|
||||
gettimeofday(&start, NULL);
|
||||
}
|
||||
|
||||
|
||||
|
||||
SEXP pic = PROTECT(allocMatrix(INTSXP, posrows, foundPI));
|
||||
for (long long unsigned int i = 0; i < posrows * foundPI; i++) {
|
||||
INTEGER(pic)[i] = p_pichart[i];
|
||||
}
|
||||
|
||||
SEXP PIlayers = PROTECT(allocVector(INTSXP, ninputs));
|
||||
for (int i = 0; i < ninputs; i++) {
|
||||
INTEGER(PIlayers)[i] = nofpi[i];
|
||||
}
|
||||
setAttrib(pic, install("PIlayers"), PIlayers);
|
||||
|
||||
// if this file is run directly using SHLIB, the following line is needed
|
||||
// R_ParseEvalString("library(IEEE)", R_GlobalEnv);
|
||||
|
||||
SEXP pkg_env = PROTECT(R_FindNamespace(mkString("IEEE")));
|
||||
SEXP solvechart = PROTECT(Rf_findVarInFrame(pkg_env, Rf_install("solvechart")));
|
||||
SEXP evalinR = PROTECT(R_tryEval(Rf_lang2(solvechart, pic), pkg_env, NULL));
|
||||
|
||||
solmin = length(evalinR);
|
||||
for (int i = 0; i < solmin; i++) {
|
||||
indices[i] = INTEGER(evalinR)[i] - 1; // R is 1-based
|
||||
}
|
||||
|
||||
UNPROTECT(5);
|
||||
// Rprintf("solution minima: %d\n", solmin);
|
||||
|
||||
|
||||
if (PRINT_INFO) {
|
||||
gettimeofday(&end, NULL);
|
||||
elapsed_time = (end.tv_sec - start.tv_sec) + (end.tv_usec - start.tv_usec) / 1e6;
|
||||
Rprintf("Time spent solving the PI chart: %f sec.\n", elapsed_time);
|
||||
gettimeofday(&start, NULL);
|
||||
}
|
||||
|
||||
if (solmin == prevsolmin) {
|
||||
// the minimum number of PIs did not change in the current level of complexity
|
||||
// we can safely retain the less complex PIs from the previous level
|
||||
for (int i = 0; i < solmin; i++) {
|
||||
indices[i] = previndices[i];
|
||||
}
|
||||
stop_counter += 1;
|
||||
}
|
||||
else {
|
||||
// this means solmin is in fact smaller than the previously found solmin
|
||||
// or it is the very first time a solmin was found
|
||||
// only here it makes sense to overwrite prevsolmin and previndices,
|
||||
// otherwise they are just as good as the ones from the previous level
|
||||
|
||||
prevsolmin = solmin;
|
||||
for (int i = 0; i < solmin; i++) {
|
||||
previndices[i] = indices[i];
|
||||
}
|
||||
|
||||
stop_counter = 0;
|
||||
}
|
||||
}
|
||||
|
||||
prevfoundPI = foundPI;
|
||||
|
||||
// printf("stop_counter: %d\n", stop_counter);
|
||||
|
||||
// One level of complexity up, and the solution minima does not change
|
||||
if (stop_counter > 0) {
|
||||
// the search can stop
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
// printf("solmin: %d\n", solmin);
|
||||
if (PRINT_INFO) {
|
||||
Rprintf("--- END ---\n");
|
||||
}
|
||||
|
||||
SEXP sol = PROTECT(allocMatrix(INTSXP, solmin, ninputs));
|
||||
int *p_sol = INTEGER(sol);
|
||||
|
||||
for (int c = 0; c < solmin; c++) {
|
||||
for (int r = 0; r < ninputs; r++) {
|
||||
unsigned int value = 0;
|
||||
int word_index = r / BITS_PER_WORD; // Word index within the implicant
|
||||
int bit_index = r % BITS_PER_WORD; // Bit position within the word
|
||||
|
||||
if (p_implicants_pos[indices[c] * implicant_words + word_index] & (1U << bit_index)) {
|
||||
value = 1U + ((p_implicants_val[indices[c] * implicant_words + word_index] >> (bit_index * value_bit_width)) & ((1U << value_bit_width) - 1U));
|
||||
}
|
||||
|
||||
p_sol[r * solmin + c] = value; // transposed
|
||||
}
|
||||
}
|
||||
|
||||
R_Free(p_pichart);
|
||||
R_Free(p_implicants_val);
|
||||
R_Free(p_implicants_pos);
|
||||
R_Free(p_pichart_pos);
|
||||
R_Free(p_covered);
|
||||
|
||||
UNPROTECT(1);
|
||||
return (sol);
|
||||
}
|
||||
|
||||
|
||||
long long unsigned int nchoosek(
|
||||
int n,
|
||||
int k
|
||||
) {
|
||||
if (k == 0 || k == n) return 1;
|
||||
if (k == 1) return n;
|
||||
|
||||
long long unsigned int result = 1;
|
||||
|
||||
if (k > n - k) {
|
||||
k = n - k;
|
||||
}
|
||||
|
||||
for (int i = 0; i < k; i++) {
|
||||
result = result * (n - i) / (i + 1);
|
||||
}
|
||||
|
||||
return result;
|
||||
}
|
16
src/CCubes.h
16
src/CCubes.h
|
@ -1,16 +0,0 @@
|
|||
|
||||
SEXP CCubes(
|
||||
SEXP tt
|
||||
);
|
||||
|
||||
void resize(
|
||||
int **array,
|
||||
const int rows,
|
||||
const unsigned int newcols,
|
||||
const unsigned int oldcols
|
||||
);
|
||||
|
||||
long long unsigned int nchoosek(
|
||||
int n,
|
||||
int k
|
||||
);
|
|
@ -1,2 +0,0 @@
|
|||
PKG_CFLAGS = $(SHLIB_OPENMP_CFLAGS)
|
||||
PKG_LIBS = $(SHLIB_OPENMP_CFLAGS)
|
|
@ -1,8 +0,0 @@
|
|||
#include <R.h>
|
||||
#include <Rinternals.h>
|
||||
#include <R_ext/Rdynload.h>
|
||||
|
||||
void R_init_IEEE(DllInfo* info) {
|
||||
R_registerRoutines(info, NULL, NULL, NULL, NULL);
|
||||
R_useDynamicSymbols(info, TRUE);
|
||||
}
|
|
@ -1,100 +0,0 @@
|
|||
|
||||
#include <R_ext/Boolean.h>
|
||||
#include "row_dominance.h"
|
||||
|
||||
|
||||
void row_dominance(
|
||||
int p_pichart[],
|
||||
int p_implicants[],
|
||||
int *p_ck,
|
||||
int pirows,
|
||||
unsigned int *foundPI,
|
||||
int ninputs
|
||||
) {
|
||||
|
||||
unsigned int picols = *foundPI;
|
||||
|
||||
|
||||
// int* survcols = (int *) R_Calloc (picols, int);
|
||||
|
||||
// for (int i = 0; i < picols; i++) {
|
||||
// survcols[i] = true;
|
||||
// }
|
||||
|
||||
Rboolean survcols[picols];
|
||||
int colsums[picols];
|
||||
int sortcol[picols];
|
||||
int temp;
|
||||
|
||||
for (unsigned int c = 0; c < picols; c++) {
|
||||
colsums[c] = 0;
|
||||
|
||||
for (int r = 0; r < pirows; r++) {
|
||||
colsums[c] += p_pichart[c * pirows + r];
|
||||
}
|
||||
|
||||
sortcol[c] = c;
|
||||
survcols[c] = true;
|
||||
}
|
||||
|
||||
for (unsigned int c1 = 0; c1 < picols; c1++) {
|
||||
for (unsigned int c2 = c1 + 1; c2 < picols; c2++) {
|
||||
if (colsums[sortcol[c1]] < colsums[sortcol[c2]]) {
|
||||
temp = sortcol[c1];
|
||||
sortcol[c1] = sortcol[c2];
|
||||
sortcol[c2] = temp;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
for (unsigned int c1 = 0; c1 < picols; c1++) {
|
||||
if (survcols[sortcol[c1]]) {
|
||||
for (unsigned int c2 = c1 + 1; c2 < picols; c2++) {
|
||||
if (survcols[sortcol[c2]]) {
|
||||
if (colsums[sortcol[c1]] > colsums[sortcol[c2]]) {
|
||||
|
||||
Rboolean itcovers = true; // assume it's covered
|
||||
int r = 0;
|
||||
|
||||
while (r < pirows && itcovers) {
|
||||
if (p_pichart[sortcol[c2] * pirows + r]) {
|
||||
itcovers = p_pichart[sortcol[c1] * pirows + r];
|
||||
}
|
||||
r++;
|
||||
}
|
||||
|
||||
if (itcovers) {
|
||||
survcols[sortcol[c2]] = false;
|
||||
--(*foundPI);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
if (*foundPI < picols) {
|
||||
|
||||
// move (overwrite) all surviving columns towards the beginning
|
||||
int s = 0;
|
||||
for (unsigned int c = 0; c < picols; c++) {
|
||||
if (survcols[c]) {
|
||||
for (int r = 0; r < pirows; r++) {
|
||||
p_pichart[s * pirows + r] = p_pichart[c * pirows + r];
|
||||
}
|
||||
|
||||
for (int r = 0; r < ninputs; r++) {
|
||||
p_implicants[s * ninputs + r] = p_implicants[c * ninputs + r];
|
||||
}
|
||||
|
||||
// same with the vector positions
|
||||
p_ck[s] = p_ck[c];
|
||||
|
||||
s++;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return;
|
||||
}
|
|
@ -1,10 +0,0 @@
|
|||
#include <stdbool.h>
|
||||
|
||||
void row_dominance(
|
||||
int p_pichart[],
|
||||
int p_implicants[],
|
||||
int *p_ck,
|
||||
int pirows,
|
||||
unsigned int *foundPI,
|
||||
int ninputs
|
||||
);
|
Loading…
Add table
Reference in a new issue